Math 115
Spring 2018
Lecture 16

$$
\begin{aligned}
& 3 a^{2}+10^{2}=c^{2} ? \\
& y=m x+b d=r t
\end{aligned}
$$

Class Quiz
(1) Find slope of a line that Contains

$$
(5,-3) \text { and }(-2,3) \quad m=\frac{-3-3}{5-(-2)}=\frac{-6}{7}
$$

(2) find eqn of a line with slope $\frac{2}{3}$ that contains the origin. $y-y_{1}=m\left(x-x_{1}\right)$

$$
\left.\begin{array}{l}
y-y_{1}=m\left(x-x_{1}\right) \\
y-0=\frac{2}{3}(x-0)
\end{array}\right\}=\frac{2}{3} x
$$

(3) Find slope of a line that is perpendicular to the line $\frac{4 x+3 y=6}{3 y=-4 x+6} \leq \begin{gathered}=-\frac{4}{3} x+2 \\ \text { Opposite Rec }\end{gathered}$ opposite Reciprocal

$$
m=\frac{3}{4}
$$

Ch. 4 : working with Polynomial
Exponential Rules
(I) $x^{n} \quad x \rightarrow$ base, $n \rightarrow \begin{gathered}\text { Exponent } \\ \text { (Integer }\end{gathered}$ (Integer exponent)

$$
\begin{aligned}
& x^{n}=\underbrace{x \cdot x \cdot x \cdots \cdot x}_{n \text { times }} \\
& x^{3}=x \cdot x \cdot x \quad, \quad(2 x)^{4}=(2 x) \cdot(2 x) \cdot(2 x) \cdot(2 x) \\
& 5 \text { times } \\
& \left(-3 x^{2} y\right)^{5}=\left(-3 x^{2} y\right) \cdot\left(-3 x^{2} y\right) \cdot \cdots\left(-3 x^{2} y\right)
\end{aligned}
$$

(2)

$$
\begin{aligned}
& x^{1}=x \\
& 5^{1}=5, \quad(-8)^{1}=-8,\left(4 x^{3}\right)^{1}=4 x^{3} \\
& \left(\frac{-3}{5}\right)^{1}=\frac{-3}{5} \cdot\left(-2 x^{4} y^{5}\right)^{1}=-2 x^{4} y^{5}
\end{aligned}
$$

(3)

$$
\begin{aligned}
& x^{0}=1, \quad x \neq 0 \\
& 5^{0}=1, \quad(-24)^{0}=1, \quad\left(4 x^{2}\right)^{0}=1 \quad x \neq 0 \\
& \left(7 x^{3} y^{2}\right)^{0}=1,\left(\frac{2 x}{5 y^{3}}\right)^{0}=1,\left(2 x^{2}+10\right)^{0}=1
\end{aligned}
$$

(4)

$$
\begin{aligned}
& x^{m} \cdot x^{n}=x^{m+n} \\
& x^{3} \cdot x^{5}=x^{3+5}=x^{8} \\
& x^{6} \cdot x^{9} \cdot x^{10}=x^{6+9+1}=x^{16} \\
& \left(-4 x^{3}\right)^{12} \cdot\left(-4 x^{3}\right)^{18}=\left(-4 x^{3}\right)^{12+18}=\left(-4 x^{3}\right)^{30} \\
& \left(\frac{2 x}{5 y^{3}}\right)^{7} \cdot\left(\frac{2 x}{5 y^{3}}\right)^{10}=\left(\frac{2 x}{5 y^{3}}\right)^{17}
\end{aligned}
$$

(5)

$$
\begin{aligned}
&\left(x^{m}\right)^{n}=x^{m \cdot n} \\
&\left(x^{3}\right)^{5}=x^{3 \cdot 5}=x^{15} \\
&\left(x^{4}\right)^{2}=x^{4 \cdot 2}=x^{8} \\
&\left(x^{6)^{10}} \cdot x^{5}\right.=x^{60} \cdot x^{5}=x^{65} \\
&\left(x^{8}\right)^{3} \cdot\left(x^{3}\right)^{7}=x^{24} \cdot x^{21} \\
&=x^{24+21}=x^{45}
\end{aligned}
$$

(6)

$$
\begin{aligned}
(x y)^{n} & =x^{n} y^{n} \\
(2 x)^{3} & =z^{3} x^{3}=8 x^{3} \\
\left(-3 x^{2}\right)^{4} & =(-3)^{4}\left(x^{2}\right)^{4}=81 x^{8} \\
\left(-4 x^{6} y^{7}\right)^{3} & =(-4)^{3}\left(x^{6}\right)^{3}\left(y^{7}\right)^{3} \\
& =-64 x^{18} y^{21}
\end{aligned}
$$

Simplify
(1) $10^{1}-(-10)^{0}=10-1$

$$
=9
$$

(2) $\left(\frac{3}{2}\right)^{3}-\left(\frac{-1}{4}\right)^{2}=\frac{27 \cdot 2}{8 \cdot 2}-\frac{1}{16}=\frac{54}{16}=\frac{1}{16}=\frac{54-1}{16}$
(3) $x^{12} \cdot\left(x^{8}\right)^{5}=x^{12} \cdot x^{40}=x^{52}=\frac{53}{16}$
(4) $\left(-2 x^{6} y^{4}\right)^{5}$

$$
=(-2)^{5}\left(x^{6}\right)^{5}\left(y^{4}\right)^{5}=-32 x^{30} y^{20}
$$

(7)

$$
\begin{aligned}
& \frac{x^{m}}{x^{n}}=x^{m-n} \\
& \frac{x^{7}}{x^{3}}=x^{7-3}=x^{4} \\
& \frac{x^{9}}{x^{8}}=x^{9-8}=x^{1}=x \\
& \frac{\left(x^{6}\right)^{5}}{\left(x^{10}\right)^{3}}=\frac{x^{6 \cdot 5}}{x^{10 \cdot 3}}=\frac{x^{30}}{x^{30}}=x^{30-30}=x^{0}
\end{aligned}
$$

Your turn:
Simplify:
(1) $\left(-3 x^{6}\right)^{3} \cdot x^{2}=(-3)^{3} x^{6 \cdot 3} \cdot x^{2}=-27 x^{18} x^{2}$
(2) $\frac{\left(x^{4}\right)^{5} \cdot x^{6}}{\left(x^{5}\right)^{2} \cdot\left(x^{2}\right)^{5} \cdot\left(x^{3}\right)^{2}}=\frac{x^{20} \cdot x^{6}}{x^{10} \cdot x^{10} \cdot x^{6}}$

$$
=\frac{x^{26}}{x^{26}}=1
$$

(8)

$$
\begin{aligned}
& \left(\frac{x}{y}\right)^{n}=\frac{x^{n}}{y^{n}} \\
& \left(\frac{x}{5}\right)^{2}=\frac{x^{2}}{5^{2}}=\frac{x^{2}}{25} \\
& \left(\frac{3 x}{y^{2}}\right)^{4}=\frac{(3 x)^{4}}{\left(y^{2}\right)^{4}}=\frac{3^{4} x^{4}}{y^{2 \cdot 4}}=\frac{81 x^{4}}{y^{8}} \\
& \left(\frac{2 x^{3}}{5 y^{6}}\right)^{3}=\frac{2^{3}\left(x^{3}\right)^{3}}{5^{3}\left(y^{6}\right)^{3}}=\frac{8 x^{9}}{125 y^{18}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (9) } x^{-n}=\frac{1}{x^{n}} \\
& x^{-3}=\frac{1}{x^{3}}, 10^{-2}=\frac{1}{10^{2}}=\frac{1}{100}, 2^{-1}=\frac{1}{2^{\prime}} \frac{\pi}{2} \\
& \left(x^{5}\right)^{-4}=x^{5 \cdot(-4)}=x^{-20}=\frac{1}{x^{20}}
\end{aligned}
$$

Simplify

$$
\begin{aligned}
\left(x^{-6}\right)^{5} \cdot\left(x^{-4}\right)^{-3}=x^{-30} \cdot x^{12} & =x^{-30+12} \\
& =x^{-18}=\frac{1}{x^{18}}
\end{aligned}
$$

$$
\left.\begin{array}{l}
\text { (10) } \frac{x^{-n}}{y^{-m}}=\frac{y^{m}}{x^{n}} \\
\frac{x^{-3}}{y^{-5}}=\frac{y^{5}}{x^{3}}, \frac{x^{-4} y^{6}}{x^{3} y^{-6}}=\frac{y^{6} y^{6}}{x^{3} x^{4}} \\
\frac{\left(x^{5}\right)^{-2} \cdot\left(y^{4}\right)^{6}}{\left(x^{-3}\right)^{-1} \cdot\left(y^{-2}\right)^{3}}=\frac{x^{-10} \cdot y^{24}}{x^{3} \cdot y^{-6}}=\frac{y^{12}}{x^{7}} \\
24-(-6)= \\
24+6=30
\end{array}=\frac{y^{6} \cdot y^{2^{4}}}{x^{3} \cdot x^{10}}=\frac{y^{30}}{x^{13}}\right]
$$

$$
\begin{aligned}
& \text { (11) }\left(\frac{x}{y}\right)^{-n}=\left(\frac{y}{x}\right)^{n} \\
& \left(\frac{2}{x}\right)^{-3}=\left(\frac{x}{2}\right)^{3}=\frac{x^{3}}{2^{3}}=\frac{x^{3}}{8} \\
& \left(\frac{x^{4}}{y^{7}}\right)^{-5}=\left(\frac{y^{7}}{x^{4}}\right)^{5}=\frac{\left(y^{7}\right)^{5}}{\left(x^{4}\right)^{5}}=\frac{y^{35}}{x^{20}} \\
& \left(\frac{2 x^{3}}{3 y^{5}}\right)^{-2}=\left(\frac{3 y^{5}}{2 x^{3}}\right)^{2}=\frac{3^{2}\left(y^{5}\right)^{2}}{2^{2}\left(x^{3}\right)^{2}}=\frac{9 y^{10}}{4 x^{6}}
\end{aligned}
$$

Simplify
Hint: Always do

$$
\begin{aligned}
& \left(\frac{-2 x^{-4}}{3 y^{-7}}\right)^{-3}=\left(\frac{-2 y^{7}}{3 x^{4}}\right)^{\text {inside of groups. }}=\left(\frac{3 x^{4}}{-2 y^{7}}\right)^{3} \\
& =\frac{3^{3}\left(x^{4}\right)^{3}}{(-2)^{3}\left(y^{7}\right)^{3}}=\frac{27 x^{12}}{-8 y^{21}}=\frac{-27 x^{12}}{8 y^{21}}
\end{aligned}
$$

Find two complementary angles such that the difference of 3 times one of them and 4 times the other one is -220°.

$$
\left\{\begin{array}{c}
\left\{\begin{array}{l}
x+y=90 \\
3 x-4 y=-220
\end{array} \Rightarrow \begin{array}{l}
\frac{4 x+4 y=360}{3 x-4 y}=-220 \\
20^{\circ} \leqslant 70^{\circ}
\end{array} \quad \begin{array}{rl}
7 x & =140 \\
x & =20
\end{array}\right.
\end{array}\right.
$$

find two supplementary angles such
that one of them is 30° more than twice the other one.

$$
\left\{\begin{array}{lc}
x+y=180 & 2 y+30+y=180 \\
x=2 y+30 & 3 y=150 \\
y=50
\end{array}\right.
$$

30 TKTS was purchased.
Totol cost $\rightarrow \$ 199 \quad \mathrm{~S} \rightarrow$ Students
Students Pay $\rightarrow \$ 5 \quad P \rightarrow$ Parents
Parents Pay $\rightarrow \$ 12$
How many of each? $\quad\left\{\begin{array}{l}S+P=30 \\ 5 S+12 P=199\end{array}\right.$

$$
\begin{array}{r}
\left\{\begin{array}{r}
-5 S-5 P=-150 \\
5 S+12 P
\end{array}=199\right. \\
7 P=49 \\
P=7
\end{array}
$$

Lisa needs 100 liters of 84% acid Solution. She has unlimited supply of 60% acid Solution and pure acid Solution.
How many liters of each $60 \%+$ Pure $=84 \%$. should she mix to obtain x y 100 what she needs? $\left\{\begin{array}{c}x+y=100\end{array}\right.$

$$
\begin{aligned}
& \left\{\begin{array}{l}
x+y=100 \quad\left\{\begin{array}{l}
x+y=100 \\
60 x+100 y=84 \cdot 100: 2 \\
6 x+10 y=840
\end{array}\right. \\
\therefore 3\left\{\begin{array} { l }
{ x + y = 1 0 0 } \\
{ 3 x + 5 y = 4 2 0 }
\end{array} \rightarrow \left\{\begin{array}{l}
-3 x-3 y=-300 \\
3 x+5 y=420
\end{array}\right.\right. \\
60 \text { of pure \& } 40 \text { L of } 60 \% \text { Acid } 2 y=120
\end{array}\right]=60
\end{aligned}
$$

Leo made $\$ 2000$ investment in 2 accounts. one paid 3\% simple interest, the other one Paid 5\% Simple interest. After 1 Year, he earned $\$ 84$ in total interest. How much per account?

$$
\begin{aligned}
& \left\{\begin{array} { l }
{ x + y = 2 0 0 0 } \\
{ 3 / . x \cdot 1 + 5 / . y \cdot 1 = 8 4 }
\end{array} \quad \left\{\begin{array}{l}
x+y=2000 \\
.03 x+.05 y=84
\end{array}\right.\right. \\
& -3\left\{\begin{array} { l }
{ x + y = 2 0 0 0 } \\
{ 3 x + 5 y = 8 4 0 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
-3 x-3 y=-6000 \\
3 x+5 y=8400
\end{array}\right.\right. \\
& \begin{array}{c}
\$ 1200 @ 5 / . \text { rate } \\
\text { غ }
\end{array} \quad \begin{array}{l}
2 y=2400 \\
y=1200
\end{array}
\end{aligned}
$$

Jake deposited $\$ 5000$ in two accounts. one paid $\dot{8}$. Simple interest, and the other one paid 5% simple interest. After one Year, interest earned from 8% account was $\$ 270$ more than interest earned from 5% account Find how much per account?

$$
\begin{aligned}
& \{\begin{array}{l}
x+y=5000 \\
\underbrace{8 / \cdot x \cdot 1}_{\text {Interest }}=5 \% \cdot y \cdot 1
\end{array}+270 \underbrace{}_{\text {Interest }}=\left\{\begin{array}{l}
x+y=5000 \\
\cdot 08 x-.05 y=200
\end{array}\right. \\
& 5\left\{\begin{array} { c }
{ x + y = 5 0 0 0 } \\
{ 8 x - 5 y = 2 7 0 0 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
5 x+5 y=25000 \\
8 x-5 y=27000
\end{array}\right.\right. \\
& \begin{array}{l}
\$ 4000 @ 8 / .1000 @ 5 \%
\end{array} \frac{13 x \quad=52000}{13 x=4000}
\end{aligned}
$$

